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Abstract 
 

The smart grid replaces the traditional power structure with information inventiveness that 
contributes to a new physical structure. In such a field, malicious information injection can 
potentially lead to extreme results. Incorrect, FDI attacks will never be identified by typical residual 
techniques for false data identification. Most of the work on the detection of FDI attacks is based 
on the linearized power system model DC and does not detect attacks from the AC model. Also, 
the overwhelming majority of current FDIA recognition approaches focus on FDIA, whilst 
significant injection location data cannot be achieved. Building on the continuous developments in 
deep learning, we propose a Deep Learning based Locational Detection technique to continuously 
recognize the specific areas of FDIA. In the development area solver gap happiness is a False Data 
Detector (FDD) that incorporates a Convolutional Neural Network (CNN). The FDD is established 
enough to catch the fake information. As a multi-label classifier, the following CNN is utilized to 
evaluate the irregularity and cooccurrence dependency of power flow calculations due to the 
possible attacks. There are no earlier statistical assumptions in the architecture proposed, as they 
are "model-free." It is also "cost-accommodating" since it does not alter the current FDD 
framework and it is only several microseconds on a household computer during the identification 
procedure. We have shown that ANN-MLP, SVM-RBF, and CNN can conduct locational detection 
under different noise and attack circumstances through broad experience in IEEE 14, 30, 57, and 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 15, NO. 6, June 2021                                2169 

118 bus systems. Moreover, the multi-name classification method used successfully improves the 
precision of the present identification. 
 
 
Keywords: Deep learning, False Data Injection Attack, Internet of Things, Machine learning, Multi-
label Classification, Power System, Smart grid. 
 
 
 
 
 

1. Introduction 

The ineffectuality of vital cyber-attack systems presents a significant danger to our society's 
strength and health. Smart grids that integrate the traditional models of the power systems with 
Information and Communication Technology ICT are seen as defenseless in particular. This 
developmental challenge has a weakness in conventional defense measures, starting from the 
ICT domain [1]. The innovation of the Internet of Things (IoT) has changed the conventional 
power system considerably. Smart grids incorporate new ICT structures that use bright 
matrices, propelled databases, and correspondence innovations, as other industrial IoT systems 
are facing incredible security challenges, especially in the face of rising cyber-attack hazards. 
The state assessment specifies the status of the power grid network based on the raw figures 
set up by the system of Supervisory Control and Data Acquisition (SCADA). In general, the 
exchanged state estimation of the network can interfere with power systems activity [2]. 
Extensive investigation of the effects on state estimates of cyber threats, such as contact barrier, 
power outage, congestion line, etc. 

The real issue of detecting False Data Injection Attacks (FDIA), where the attackers are 
expected to negotiate network estimates. This FDIA implies that the Power System State 
Estimation (PSSE) will be affected [3]. The condition of an energy grid is usually defined by 
the voltage values on all network buses. FDIA concentrates on resolving the calculation of the 
status of the power grid by inserting false data into meter calculations. The traditional false 
data detector (FDD) of the present SCADA device may be utilized for a highly structured 
FDIA. FDIA is known to be one of the state estimate's most offensive threats [4]. Any 
imperceptible attack may also be created, even if the attacker has insufficient power system 
design data. The innovative power system cannot be operated without a reliable PSSE and is 
frequently operated close to its operational cutoff points. Typically, the PSSE has strategies to 
recognize abnormal false data and residual faults. When the attacker has adequate information 
regarding the topology of the system, an entirely structured attack may pass the false data 
detector on residual data and disrupt the PSSE on an ideal scale [5-6]. Those attacks are known 
as stealth attacks or imperceptibility [7-8]. The consequences of FDI attacks may be dynamic 
and vary from financial performance to overburden and actual human threat impact. 

Simultaneously, a large number of investigative efforts have been devoted to protecting FDIA 
from the use of certain physically protected systems [9-10], which are largely classified into 
two classifications, and information subordinate identification calculations [11-12]. For 
instance, the basic number of sensors to be monitored must be compromised and a convincing 
estimate for the optimal PMU circumstance should be developed to avoid FDIA. In any event, 
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an effective system offers an ideal solution for amplifying insurance standards for compulsory 
assets. Once again, the FDIA discovery question was suggested to be investigated in different 
knowledge subordinate estimates, for example, the mixing of Gaussian transmission 
technologies [13], maximum likelihood estimation, Kalman networks, weak development, 
theory structure, and the arrangement of comparability [14-15]. Used burden-scale statistics, 
age plans, and information synchro phasers, for example, provide the empirical description of 
the spectrum between SCADA-based State calculations and conjecture-based perceptions of 
chances. Nonetheless, knowledge concerning the attack model and power system details is 
extraordinarily helpful to the feasibility of the vast majority of abandonment function. Data-
driven approaches for acknowledgment based on deep learning were late suggested [16-17]. 
Deep learning strategies help the system to obtain the models genuinely from knowledge 
planning, not through a pre-characterized paradigm of attack and power systems. Conversely, 
all the current strategies just stressed the location of the attacks to the fact that we may learn, 
i.e., that a malignant attack happens. To quickly develop successful countermeasures, it is 
essential to recognize the area of attack from time to time other than the recognition of nearness 
[18]. The irregularity and co-occurrence dependency on identified data from the region often 
provides additional scope to update the application of proximity recognition. 

In this paper, we consider a deep learning tool for location detection FDIA to overcome any 
problems. Specifically, we discuss the problem of FDIA localization as a multi-name problem. 
To address this issue, we suggest a design that links the CNN to a traditional FDD detector. 
To evacuate the low-quality content, the standard FDD indicator is used. To identify the 
anomalies and co-occurrence dependency of the FDIA, the following CNN is used as a multi-
name classifier. The design is convenient as it is without a model and does not require the 
current FDD Framework to be changed [19]. A household computer has a run time detection 
process of just a few microseconds. In overview, our main endeavors are as follows. 

• As far as the literature survey performed, this paper is one of the first to create an FDIA 
power system, deep-learning locational detection portion. In specific, it links a deep-neural 
network with a typical FDD detector, referred to as the " Convolutional Neural Network - 
Locational Detection (CNN-LD). CNN-LD architecture can apply to the range of hidden 
attacks and topology models with updated network parameters. 

• We formulate the FDIA location detection problem as a multi-label classification problem 
and use CNN as a classifier to extract power flow correlation functionality and increase 
location detection ability. We have carefully planned the structure of the network (for 
example, making pooling layers) and the loss functions according to FDIA's specific 
architectures. 

• We performed comprehensive tests of open-source material and technology to test and 
evaluate the suggested program. To determine the demonstration and prediction potential 
of the conceptual structures, border-impact studies are also carried out. 

2. Related Work 
Ongoing improvements demonstrate that, in FDI attacks, false or malignant data are injected 
with meters and sensors by sensitively framing the attack vector, that fills the system operator 
from a feasible, yet off-base system condition. Many experiments have been carried out to 
establish effective countermeasures to defend against attacks by FDI [20]. Such ventures are 
commonly classified into two categories: liability security and exposed-based defense, which 
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defend against FDI attacks. There are also two forms of exposed-based protection. The main 
thing is for smart meters or sensors to be secured, because the estimating elements, supported 
by meters or sensors, take on a major influence in the smart grid that is fit for cyber-attacks. 
The next sort is to ensure that the power system is created. The number and location of 
measuring meters needed to be secured are important to determine the principal type of 
protection-based defense that can prevent the estimated meter from being compromised. From 
the protection perspective of estimate meters, the least expensive method of strategy to 
guarantee the power system besides FDI attacks has also extended it to explore picking which 
protection meters and to adopt the financial plan of guards to carry on each of these meters. 
The authors in [21-22] suggested both accurate and approximate calculations, using the 
graphical strategies, to choose the basic number estimates besides system protection of many 
FDI attacks by state factors. For the next sort, the establishment of the power structure is 
important to the attacker's earlier knowledge. Therefore, securing the data set up of power 
systems, which becomes necessary to avoid FDI attacks. In [22], the authors investigated FDI 
safeguard tools using surreptitious topological data.  
The FDI attack problem when the attacker provided incorrect information on transmission line 
admittances. Also, a new vulnerability action has been established to compare and classify 
grid topologies with incomplete information against FDI attacks. Though this protection-based 
security will take on a particular duty of preventing FDI attacks, it is hard to ensure that the 
configuration details and the safeguarded procedures are preserved in the finest condition. 
Throughout the end of 2015, Ukraine was seen to experience a generous cyberattack [23] 
professorial collapse, and experts unchanged disperse attackers were able to obtain the lead 
throughout screaming and the criteria that followed to traverse the everlasting tracking along 
with observing power system. Enabling authorities to have 5G access to energy consumption 
monitoring services might also provide them with the information needed to have 
comprehensive and insightful information about public utilities (e.g., streetlights, traffic 
cameras, building heaters, others). Optimizing city energy management can be done by 
identifying the primary energy sources it is also important to invest in methods that enable 
both safer and more secure communications as well as providing end-to-to-end (end-to-to-end) 
visibility. From this, we have seen a paradigm shift from dedicated resources for dedicated 
functions to virtual, orchestration, and automation, and software networking for shared 
resources; moreover, 5G and beyond will see virtual, orchestration, and automation, 
cloudification, and software network composition for shared resources. Anomaly detection in 
a lack of security is more damaging to network stability and user data than if the protocols 
cannot only detect and attack threats in real-time but able to do not respond to them (with 
minimum delay). Threat/ anomaly such time-sensitive data requires the assistance of AI and 
ML [25]. In comparison, the protection-based strategy is increasingly material for a limited 
power network or only very simple smart meters or sensors and associated tests owing to the 
exorbitant expenses of ensuring that any single genius meter or sensor is put in frameworks. 
Based on the breaking of the harsh estimates, the detection obstacle against an FDI attack is 
conducted.  

Similarly, Kullback-Leibler Distance (KLD) will be employed toward classifying FDI 
attacks by utilizing in such a way to greater KLDs were formed when injected false data was 
applied to the force structures and estimate varieties were possibly misleading [26]. The 
quality of identification was therefore partial through the constant limit for this technique. It 
can be observed that the power grid measurements are of inherently small dimensions and the 
sparse nature of FDI attacks and mechanisms. To solve the problem, they have been utilizing 
methods of reducing nuclear requirements and low-grade matrix factorization. In either 
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scenario, the FDI attacks detection techniques for a broad electricity grid, suggested with the 
well-developed multifaceted complexity of computational technology [26-27]. Instead of the 
state estimates which might attain efficient FDI attack locations in four individual situations 
[28], a distributed host scheme was suggested based on collaborative determinations: single, 
sparse, random, and dense four kinds of appropriations for false measurement data. 

3. POWER SYSTEM NETWORKS 
1. AC State Estimation 

State estimates are extremely critical for various usage of power systems, such as the ideally 
suited power flow, load determination, possibility analysis, and currency dispatch, which are 
all based on state estimate results. AC State estimates utilize non-linear tasks between 
estimates and system state [29-30], not the same as DC State estimates. The model for 
comparison is shown as following equation 1. 

( ) _x h n m er= +          (1) 

Where x is a vector of estimates which includes each actual Pij power as well as the reactive 
power of Qij delivered by any two associated buses i, j upon this power system topology, and 
also the actual power injection Pi, and its reactive power injection Qi in bus i, through ,i j N∈
where N means the structure of power system buses. n has been the vector for state factors like 
transportation voltage sizes and stage points where n contains 2|| || 1N − state factors as the 
slack bus phase angle is continuously set to 0 with || ||N  the sense cardinal to set N, i.e.

1 2 1 2[ , , , , , ]T
N Nn U U Uθ θ θ=   , where m_er is the measurement errors, and h(n) is a 

nonlinear capability between the vector n and the system state vector n [31] as seen in equation 
(2) 

x ( )
2

2
2

( )1| , exp
22

j j
j j

jj

x h n
H x n δ

δδ π

  −  =  
  

      (2) 

2. AC State Estimate FDI Attacks 

Usual innovation in false data detection depends on the ˆ_ ( )ra m er h n= − residual test. The 
state calculation value was quite similar to the real system value. False data is acknowledged 
if the residual is more significant than a certain limit τ, i.e., ˆ|| _ ( )||m er h n τ− > Assume each 
attacker is aware of h(•), just let ˆbadn  and _ _badm er m er bd= +  indicate that after the FDI, 
the system status is incorrect and that the measurement checked is comparable. The 
corresponding residual from the FDI attacks is obtained in equation 3. 

𝑟𝑟𝑎𝑎𝑏𝑏𝑏𝑏𝑏𝑏   =  𝑚𝑚_𝑒𝑒𝑟𝑟𝑏𝑏𝑏𝑏𝑏𝑏 −  ℎ(𝑛𝑛�𝑏𝑏𝑏𝑏𝑏𝑏) 

 =  𝑚𝑚_𝑒𝑒𝑒𝑒  +  𝑎𝑎  −  ℎ(𝑛𝑛�𝑏𝑏𝑏𝑏𝑏𝑏)  +  ℎ(𝑛𝑛�) −  ℎ(𝑛𝑛�) 

 = 𝑟𝑟𝑟𝑟  +  𝑎𝑎  − ℎ(𝑛𝑛�𝑏𝑏𝑏𝑏𝑏𝑏)  +  ℎ(𝑛𝑛�)       (3) 

See from (3) for faults applied to the calculation in AC status reports, if𝑏𝑏𝑏𝑏  =  ℎ(𝑛𝑛�𝑏𝑏𝑏𝑏𝑏𝑏) −
 ℎ(𝑛𝑛�), it could be passed on false data details [32]. In detail, it is important to monitor certain 
system state variables when the attacker needs to inject false data in an AC state estimate. It is 
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a permanent cost and exercise for attackers to collect all data of h. Now and then it can take 
just a few meters to create a good subtle FDIA. In reality, an ideal stealthy attack may also be 
effectively established with incomplete knowledge of system parameters. 

 

3. The estimation of power states 

Estimation of the operational state of a power system through available metering devices In 
this paper, we consider microgrids, which are preferred due to their advantages of greater 
reliability, simpler control, and better integration with renewable sources and energy storage 
units. The relationship between the n-dimensional measurement  1 2 3, , , , T

nz z z z z   and 

the system state  1 2 3, , , , T
nx x x x x  can be expressed as equation 4 

z Hx e            (4) 

where error  1 2 3, , , , T
ne e e e e  and H is the measurement noise and Jacobian represents 

the uncertainty in Jacobian Conventional 2-norm comparison of measurement error with a 
minimum-quality threshold  is made to determine whether or not measurements are bad, that 
is, compromised. Because this is, in this case, the detector will only signal an attack as long as 
an attack is presented in equation 5. 

2

2
R z Hx             (5) 

4. Locational Detection 

The presence of FDIA is numerically proportional to the characterization, for example, x, in 
two classes, of the whole vector estimate: there is or not. For machine learning [33] this is a 
single label classification problem. However, it identifies the location of the attack in two 
classes of each element of the vector of estimation, i.e.,xi. This is, from a machine learning 
perspective, the issue of locational detection is a multi-label order issue. Since this progress of 
deep learning in a single label classification over the previous decade has been incredible, 
multi-label classification is still very exploratory because of its complexity and its broad 
relevance. Apart from single-label classification, a vast number of meaning indicators, 
sometimes contradictory in design, can estimate problems relevant to the multi-label 
classification. The properties of multi-label issues are typically remarkably inconsistent, and 
the single-label equilibrium methods would hence not work. We design the proposed neural 
network configuration carefully to isolate and present similar data to generate adequate 
performances in multi-label classes to solve the problem [34]. In contrast, in our empirical 
studies, we will even evaluate the improvements to the single label approaches. 

5. Convolutional Neural Network 

The successful generalization category of Neural Networks (CNN or ConvNets) in the domain 
of image and video processing in real-time. CNN describes the multi-node, multi-layered 
neural network. We construct a CNN by using three basic layers: convolution, pooling, and 
fully connected. In this way, CNN converts the first input layer to the final output which is 
given as a score. In particular, each convolutional layer and fully connected layers modify both 
the weights and the biases/activations in the volume. Gradient descent will be used to train the 
CNN to minimize the difference between the outputs and the dataset class labels [35]. 
 

 



2174                                                                                Srinivasan.V et al.: Multi Label Deep Learning classification approach for  
False Data Injection Attacks in Smart Grid 

4. PROPOSED MULTI-LABEL LD CLASSIFICATION APPROACH  
 
The system is provided with estimates of discreet time examples from back-to-back, i.e., the 
time in which the usual estimates occur and the proposed locational detection of FDIA is 
presented in the Fig. 1. Besides, in the process of preparing the CNN classifier, the proposed 
techniques do not use any earlier factual presumptions (for example, H). This requires 
estimates and ground truth names. In a sample time t, the detail is first observed by the FDD 
detector (continuous estimation). As seen in Equation. (2), by computing the '2-standard of the 
remaining and contrasting estimation and the foreordained edge τ, FDD evaluates the quality 
in measurement data. The current meter is reported by FDD to be undermined or upsetting 
when R ≥ τ. 2 Inspecting and communication errors as a consequence of their strong residual 
characteristics may be recognized viable as potential unstructured FDIA [36]. Should 
approximate data pass the FDD, the closeness and region of ordered FDIAs will be calculated 
by the CNN-based multi-label classifier, by breaking down the anomalies and the co-
occurrence dependency including its data. 
 

 
 

Fig. 1. Proposed FDIA-LD Technique 
 

The CNN-LD hypothesis suggests uses CNN to isolate and analyze the FDIA's high 
dimensional contextual highlights. They denote the data (i.e., the estimates), ground truth 
labels (i.e. meter classes), and yields (i.e. CNN period t classifications) as 1 2( , , , )t t t t

nx x x x= 

1 2( , , , )t t t t
nm m m m=  𝑚𝑚�𝑡𝑡   =  (𝑚𝑚�1𝑡𝑡 , 𝑚𝑚�2𝑡𝑡 ,⋯ ,𝑚𝑚�𝑛𝑛𝑡𝑡 )and, any one of them. The input and output 

data components are 19 for IEEE 14-bus, in consideration of the fact that 19 measurements 
occur in our reconstruction settings within the 14-bus system. Meter i name for ground reality 
at time t is calculated by the guideline: 

1, .
0,

t
i

the meter i at time t is compromised
m

otherwise


=


     (6) 

CNN ˆ t
nm 's performance is consistent in the range of 0 and 1. The classifier then characterizes 

a range limit for comparing values to 0 or 1. In compliance with the rise or decrease in the 
specification parameters, the separation edge may be modified. The discrimination limit in this 
paper is set at 0:25 according to the usual procedure unless otherwise specified. 
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Fig. 2. Proposed 1D Deep Learning CNN Architecture 

 
New CNN architectures also include much of the original CNN's design concepts, such as 
convolution and pooling. Conventional CNN's use only 2D data; such as images and videos 
Their name is "2D CNNs". A variation of the 2D CNNs has recently been produced named 
1D Convolutional [37]. The experiments have shown that these one-dimensional CNNs have 
the following advantages when applied to one-dimensional signals: 

• For 1D CNNs, instead of matrix operations, FP and BP do Computational difficulty 
of 1D CNNs is smaller than 2D CNNs. 

• The recent work suggests that 1D CNNs with a limited number of hidden layers (i.e. 
1D data) are capable of performing challenging functions For instance, in 2D CNNs, 
certain tasks involve deeper architectures. Networks with shallow interfaces are much 
simpler to design and Implement. 

• Many GPUs and hyperparameter optimization (e.g. Cloud computing or GPU farms). 
In contrast, traditional machine architectures are feasible and fast for CNNs with a 
single secret layer (e.g. 2 or less) and fewer neurons (e.g. 50-100). 

• Due to their lower computational demands, 1D CNNs are well-suited for real-time and 
handheld platforms 

• Compact 1D CNNs have been demonstrated to have excelled on applications with 
little labeled data and dynamic signal variations (i.e., patient ECG, civil, mechanical, 
or aerospace structures, high-power circuitry, power engines or motors, etc.).  

In Fig. 2, there are two groups of CNNs, distinguished by their techniques for pooling: 1) 
“CNN-layers” that include 1D convolutions and 2) Fully connected layers (MLP). 

As stated above, the primary parameters of the proposed neural network are: we use two 
convolutional layers to extract the convolutional features To achieve the balance between the 
accuracy and computational time, the two convolutional layers are chosen. In particular, the 
rise in convolution layers would improve the precision, but the computing load often increases. 
For the experiments reported in this paper, we used two convolution layers to balance both the 
accuracy and the efficiency. Increasing the number of layers adds a larger number of 
parameters increases the chance of overfitting [38]. The proposed CNN network 
hyperparameter settings are shown in Table 1. 
Each convolution layer has many filters. The length of the kernels is the same as the number 
of data points and the lengths of kernels are 2, 3, 5, and 7 respectively. A set of kernels that 
has a length of 5 will extract information for an hour or a day (or several days) about each data 
item. Also, kernels with lengths of 5 and 7 will identify features from the weekly/annual 
periodicity. To - the risk of neural network overfitting, the network dropout percentage is set 
to 0.25.  
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Table 1. Hyperparameter settings 

Stage Type Kernal Function Output Size 

1 Input - - 19 

2 Conv 5 x 1 Feature Extraction 128 

3 BatchNormalization - Standardized (Mean = 0 & SD =1) 128 

4 Leaky RELU - Activation 128 

5 Conv 3 x 1 Feature Extraction 256 

6 BatchNormalization - Standardized (Mean = 0 & SD =1) 256 

7 Leaky RELU - Activation 256 

8 Conv 3 x 1 Balanced Accuracy 128 

9 BatchNormalization - Standardized (Mean = 0 & SD =1) 128 

10 Leaky RELU - Activation 128 

11 Conv 3 x 1 Balanced Accuracy 64 

12 BatchNormalization - Standardized (Mean = 0 & SD =1) 64 

13 Leaky RELU - Activation 64 

14 Pooling Layer (Flatten) - Reduce learned features 1216 

15 Fully Con. Layer (MLP) - Buffer 19 

16 Sigmoid   Activation 19 

 

The design includes an input layer, some convolutional layers, a smoothing layer, an 
associated shrouding layer, and an output layer. The input layer contains n input numbers 
which through time refer to the n estimates. Filter in the first convolutional layer is used to 
generate highlights through means of convolution operation, non-linear transformation then 
batch-normalization with the changed linear unit activation (ReLU)[30] window. The deep 
CNN architecture for FDIA locational detection is seen in the Fig. 2.The entity maps c1, such 
as the first convolutional layer, which can be transmitted from input N is expressed as equation 
7 

1, 1, 1,Re ( * )j j jx LU N h k= +         (7) 

Here, 1, jh was its jth convolution bit, which is essentially a 1D filter, and 1, jk would be the 
scalar predetermination that compares. In equation. (5), the entire convolution yield of a 
generally used deep learning portrait is complemented with a scalar predisposition 1, jk  [31]. 
The operation of convolution is defined * in (8) and the performance is described as location 
i. 

1,
1,

1,
1
( )[ ]*( )[ ]

2

jk
j

j
n

k
h i N i l

=

− +∑         (8) 

1, jk and *here indicate separately the duration of the 1, jh  filter and the operation of the inner 
product portion. The masked highlights of the (p-1)th convolutional layer generated by the 
filter are most often used as a contribution to the pth convolutional layer and are then treated. 
The output may be measured as equation 9 
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, 1 , ,Re ( * )p j q p j q jx LU x h k−= +         (9) 

Where ,p jx has been the pth convolutional layer jth feature map. There are hyperparameters in 
the sum of filters on each layer and in the depth of convolutional layers, which can be stated in the 
reconstruction field. The highlights obtained from the last convolutional layer, i.e. pmax

th convolutional 
layer, are transformed to a single vector in a smooth layer and cared for in a completely connected 
hidden layer with the ReLU activation function. That is 

, maxRe ( * )P j P p Px LU u x k= +                    (10) 

Where ,P jx , Pu , and Pk indicate individual level layer element guidelines, weights, and 
biases. The nodes are also fully associated with n nodes there in the output layer. The sigmoid 
activation function is used to order every estimation for the nodes in the output layer. The final 
multi-label outcome ˆ t

jm for meter j at period t is obtained in equation 11. 

ˆ ( * )t
j F P Fm sigmoid u x k= +                        (11) 

where Fu and Fk mean the weights and biases of the dense layer, separately.  We need to 
initially update the learning boundaries, i.e., filters h, u weights, and k biases, in each layer 
before using the suggested locational detection strategy for FDIA 's estimates. This process of 
parameter tuning is known as training, which indents to determine the appropriate parameters 
for organizing the input and output as in training data. 
 

a) Cross-validation and mini-batch: We are taking the mini-batch to eliminate blood openings to 
render it appropriate for Understanding and reject over-fitting concentrate. The mini-batch 
also includes 200 statistics in our simulations. A fixed number of training samples are selected 
irregularly from each iteration, for example, a mini-batch, to calculate the direction. By normal 
machine learning practices, 7/10 is separated in a prepared set and 3/10 is included in each 
cluster's approvals. The fitting process is completed by the Adam optimizer through a learning 
speed of 0.001 and a tolerance of 5 underlying. 

b) Loss function: We are aware of the difficulty of a loss function in measuring the true outcome 
from ground truth for any set that is more than normal to locate an optimal learning parameter. 
The failure potential of the new CNN is selected for cross-entropy function, to expand the 
enterprise to multi-label arrangements. The crossing is a loss function to a mini-batch 

1 2 3 200{ , , , , }t t t tθ =  is achieved by equation 12. 

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 (𝜃𝜃)  = � − 1
𝑁𝑁𝑛𝑛∈𝜃𝜃

 � (𝑚𝑚�𝑖𝑖𝑡𝑡  log (𝑚𝑚𝑖𝑖
𝑡𝑡)𝑁𝑁

𝑖𝑖=1   +  (1  −  𝑚𝑚�𝑖𝑖𝑡𝑡  log (1  −𝑚𝑚�𝑖𝑖𝑡𝑡)))  (12) 

We will obtain the Adam [30] analyzer to define the total limits of a mini-batch θ with an 
unmistakably marked loss function. 
 
 

5. IEEE BUS Test System 
 
Throughout this portion, we are reviewing the demonstration in the IEEE 14, 30, 57, and 118 
transportation power frames of the proposed FDIA locational detection tool. System 
topologies may be obtained from MATPOWER [34] and described in Table 2. Measurements 
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in meters become often interlinked along with parallel buses or sections. Moreover, by 
splitting the meter figures of the adjacent lists CNN earns highlights. We list the meter 
calculations dependent on the topology of the network. We mention the stream meters of q = 
1 in this document as first: 

i) the unindexed meters of bus q and set q = q + 1 are listed; 

ii) They finish the listing process if q > 14(30,57 and 118); 

iii) the strategy should transform to i in every case. 

At this stage, the index is carried out from line meters and the injection meters are labeled in 
compliance with the through transport order. For purposes of representation, the IEEE 14-bus 
structure is defined in Fig. 3 as a reported detection location. For the convenience of the posts, 
the location and lists for the 30, 57, and 118-transport systems are ignored. 
 

Table 2. Statistics of IEEE Bus Test Systems 
Buses 14 - bus 30 - bus 57 - bus 118-bus 

Power Lines 20 39 75 186 
Measurements  19 37 71 180 
Inject measurements 8 13 24 70 
flow measurements 11 21 47 110 
Unmeasured lines 2 3 5 9 

 

 
Fig. 3. The 14-bus IEEE Test System 

a) Base Load 

Firstly, by extending this current knowledge by deliberately producing heaps on each bus, we 
create optimistic results. The loads generated follow an ordinary flow whose average 
equivalence is 1/6 of the approximation of the basis load[34] and the normal distribution. We 
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also produce negotiated information. The two FDIAs are unique to the ordered FDIA and 
unstructured FDIA. With the usual FDD mechanism in the CNN-LD system, unstructured 
FDIAs may be stopped. The system must treat us faulty measurements then properly dispose 
of them. But we establish coordinated FDIA all over. 

b) Attack Implementation: 

They build knowledge compromised by a min-cut FDIA model of partial network details[10], 
owing to the restricted financial intentions of the attackers. Most specifically, the individual 
needing the basic cost of acquiring the information on a certain transmission line impedance 
is the perfect partial information attack. The system limits are created as follows without 
missing a detailed statement: 

i)A discreet uniform distribution (2; 5) inside the 14- and the 30-bus system as well as a 
discrete uniform (2; 10), in the specific distribution in the 57- and 118-bus structure follows 
the quantity of target state variables. 
ii) Knowledge regarding the actual transmission line impedance is calculated at the cost of 
collecting it in the same manner. In each other case, the injection data differ from 1 to 5 and 
are set to 1. 

c) Measurement Noise: 

Eventually, since the modes of estimate and communication are unavoidably efficient, we are 
appreciating periodic Gaussian noise. The standard deviation assumption in specific increases 
in a figure from 0.1 to 0.5. 5 and in all other cases it is set to 0.2. 

d) Metrics of performance assessment: 

In our analysis, we use precision and recall including its findings obtained to assess efficiency. 
Precision and recall are described by 

Precision = TPR
TPR FPR+

       (13) 

furthermore,  

Recall = TPR
TPR FNR+

        (14) 

Apart from that. In this paper the probability of a compromised location is assigned to True 
Positive Rate (TPR), False Positive Rate (FPR), or False negative (FDR), an uncompromised 
location is separated from the undermined and an uncompromised location is separately wide. 
We often strike the F1-Score to achieve a form of balance among precision and recall. F1-
Score is a consistency and analysis geometrical standard that is informed as 

1
Precision + RecallF -Score = 2.
Precision*Recall

      (15) 

Find three different forms of a quantifiable norm that have long called observable 
measurement. Root Mean Square Error (RMSE), R-squared accuracy (R2) is a crucial true 
metric that is a recurrence model presenting the degree of the discrepancy or empirical 
discrepancies in terms of a relevant variable that can be clarified by a free component, Mean 
Absolute Error (MAE). The four types of success evaluation used in this study can be 
overcome using the following conditions, 
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6. Results and Discussions 
 

Initially, we are focusing on the six metrics between SVM-RBF, an ANN-MLP, and a specific 
IEEE bus system with different numbers and a proposed CNN-LD with a specific IEEE bus 
system shown in Table 3. The 1D CNN-LD proposed system defines three baseline algorithms, 
which justify the efficacy of the method suggested both in accuracy and recall, F1-Score, 
precision, R-squared, and RMSE. 
 
 

Table 3. Comparison of results of specific IEEE bus test method 

Technique No. of 
Buses 

Precise 
(%) 

Recall 
(%) 

F1 
Source 

Accuracy 
(%) 

R-
Squared RMSE MAE Training 

Time (S) 

Proposed 
CNN-LD                   

 14 - bus 99.48 99.17 99.29 98.31 0.7974 0.1074 0.0115 304.9 
 30 - bus 99.34 99.21 99.53 98.08 0.8048 0.1057 0.0111 376.6 
 57 - bus 99.27 99.39 99.46 98 0.7614 0.1165 0.0135 453.3 
 118-bus 99.21 99.44 99.18 97.89 0.9104 0.1783 0.0164 936.7 

SVM-RBF                   
 14 - bus 83.69 88.51 84.68 89.71 0.7138 0.1036 0.0137 267.4 
 30 - bus 83.72 88.13 84.71 89.48 0.7189 0.1047 0.0133 352.1 
 57 - bus 83.41 88.27 84.58 89.79 0.7819 0.1041 0.0136 473.7 
 118-bus 83.56 88.22 84.64 90.41 0.7352 0.1033 0.0134 986.4 

ANN-MLP                   
 14 - bus 94.35 97.52 97.93 84.68 0.5714 0.1006 0.0152 327.2 
 30 - bus 94.69 97.71 98.16 84.36 0.5891 0.1012 0.0126 417.8 
 57 - bus 94.52 97.89 98.19 84.61 0.5793 0.1009 0.0137 583.7 
  118-bus 94.17 97.73 98.06 84.49 0.6218 0.1011 0.0132 1073.2 

 
From Table 3, we look at the measurements when the number of hidden layers keeps steady 
on 4. The proposed architecture accomplishes high F1-Score, precision, and recall, accuracy, 
R-squared, and RMSE. The accuracy obtained by SVM-RBF is higher, although the precision 
and analysis are lower than those obtained by ANN-MLP. We would like to emphasize that 
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the CNN's extremely high accuracy is due to the co-occurrence and consistency within the 
CNN-LD structure we have designed. 

In [0;1], the outputs from the CNN ˆ t
im ’s are fixed, and the separation limit is quantized at 0 or 

1. In Fig. 4, the segregation limit has been set at 0.5. The estimation of the limit essentially 
defines the compromise between TPR and FPR. A higher TPR and lower FPR are created in 
particular by the lower limit. The solution in Fig. 4 is tested, where FPR versus TPR plots 
while the limit is 0 to 1. The area under the ROC (AU-ROC) is generally regarded as a 
performance index of the partial limit to represent relative tradeoffs between TPR and FPR. 
The area between FPR, TPR, x, and y-axis is characterized here as AU-ROC. An outstanding 
AU-ROC model is around 1, which means it is strongly detachable. The algorithm assumes 
that 1 is 1 and 0 is 0. By the moment a prediction is similar to 0 for AU-ROC, 0 is expected 
and 0 is estimated. The figure shows that the proposed instrument is close to AU-ROC 1, 
which response here to the delightful discriminatory limit of the component proposed. 

 
Fig. 4. The proposed mechanism's ROC curve. If FPR decreases from 0 to 0.0002 and then can simply 

track TPR and FPR from 0 to 0.002. TPR rises to 0.99 very rapidly. 
 
We are drifting away and evaluating how effectively the program works to detect attacks. We 
consider the power system as optimistic so there is no attack if ˆ t

im = 0, in each 0,1,2, ,i n=  . 
Everything others are considered as compromised by the power system, or attacks are possible. 
Fig. 5 discusses the application of the new instrument for FDIA close detection identification. 
In specific, the detection performance and the two metrics are compared: SVM-RBF and CNN. 
We have considered the IEEE 118 bus transport framework for comparing the stealthy FDIA 
detection through fault-injection accuracy and noise measurement deviation. 
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Fig. 5. The accuracy of the IEEE 118- bus system stealthy FDIA detection. (a) Fault-injection 
accuracy data. (b) Accuracy compared with normal noise measurement deviation. 

 
 
Fig. 5a demonstrates the detection accuracy of ANN-MLP, SVM-RBF, and proposed CNN-
LD identification. The suggested acknowledgment typically accomplishes the most significant 
exploration quality in comparing proposed 1D CNN-LD and SVM-RBF techniques. We also 
analyze the accuracy of the similarity detection against the standard deviation of estimates of 
Fig. 5b. Similar to its structure, it fulfills the most remarkable accuracy of the exploration. 
Until leaving this section we should highlight that given the fact that the plan is based on 
recognizing FDIA regions, the multi-label classification methodology will enhance the 
accuracy of the location detection process. That is since the multi-label ensemble imprisons 
the abnormality of meter predictions and their co-occurrence dependency. 
 

Table 4. Performance Analysis 
Model Year Accuracy  Precision  Recall F1_score MAE Time 

Proposed CNN - 98.31 99.48 99.17 99.29 0.0115 304.9 

FADN-W-2048 [39] 2020 - - - - 0.01894 113.47 

DNN [39] 2020 0.843 0.596 0.429 0.487 - - 

1D-CNN  [38] 2020 0.871 0.689 0.439 0.536 - - 

TextCNN [38] 2020 0.83 0.956 0.601 0.738 - - 

ANN [9] 2020 80.69 81 81 80 - 6.8 

KNN [9] 2020 99.7 99.8 98 99.7 - 25.6 

ELM [8] 2019 94.71 - - - - 304.7 

CNN-RNN-BiLSTM [36] 2019 0.9712 0.9929 0.999 - - - 
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Fig. 6. Performance Comparison 

 
Table 4, gives the comparison of our proposed approach with the existing models in terms of 
metrics such as Accuracy, Precision, Recall, F1-score, Mean Absolute Error and Training 
Time. Because of the ability of the proposed CNN model as a classifier to extract power flow 
correlation functionality and increase location detection, the proposed approach out performs 
when compared with the existing models. Even though the run time is high in our proposed 
approach, as overall the performance metrics and quality of the detection process is improved 
in terms of the quantitative values obtained during the validation. Moreover, Xue, D et.al.,[8] 
contrasted and proposed CNN to demonstrate the error accuracy parameters during his study. 
The findings often discuss and compare the general performance metrics and computation time 
for any model, as the IEEE 14-transport test system is seen in Fig. 6. This has helped us to test 
the FDIA utilizing our results of specific machines. 98.31% of us met performance of 84.68%, 
and 89.71% respectively. 
 
 

7. Conclusion 
 

In this paper, we have formulated the locational detection problem of FDIA as a multi-label 
classification system. The FDD standard is for estimating the quality of measurement data in 
real-time and for extracting data of poor quality. The CNN is intended to capture FDIA's 
anomalies and co-occurrences. The mechanism is model-free in that the architecture does not 
depend on the supposed attack model and it's cost-effective in that the architecture is based on 
the existing FDD which does not involve the alternation of the existing FDD system and the 
time of detection on household computers in hundreds of microseconds. Furthermore, in IEEE 
14, 30, 57, and 118- bus power systems, we have conducted extensive simulations that 
demonstrate practicality. We have shown in particular that CNN-LD can detect the entire bus 
system locally under different noise and attack conditions. In addition, we have also 
demonstrated that state-of-of-the-the-the-art benchmarks can be better. 
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